Fred Piper Information Security Group

Cryptography From Black Art to Popular Science

Fred Piper

Codes & Ciphers Ltd 12 Duncan Road, Richmond Surrey, TW9 2JD Fred.piper@codesandciphers.net

Royal Holloway, University of London Egham Hill, Egham Surrey TW20 0EX <u>f.piper@rhul.ac.uk</u> www.isg.rhul.ac.uk

Aims of Lecture

- To enjoy ourselves
- To look at some implementation issues for cryptographic systems
- To see how cryptography has changed in the last 40 years

Industry's Problems with Implementing Cryptography

- No real problems with algorithms it's the wraparounds
- Serious concerns about some recent events DigiNotar, RSA
- Not sure how they should be regarding possibility of quantum computers
- Cryptography needs standards (change slowly), but we need flexibility
- Need for early warning about necessary changes (e.g. key lengths)
- Concerns about timeliness of hardware (cryptographers recommend changes faster than hardware can be replaced)

A Little History

- Pre-1975: Hush hush!
 - Practised mainly by Governments and military
- Early 1980s: Courses start
 - Customers start to know what they require
- Early 1990s: Qualifications start
 - The role of security manager is no longer a punishment
- Early 2000s: Popular science
 - Everyone knows about it
- Today: Fundamental to e-commerce, e-Government etc

Popular Does Not Mean Easy

- Golf is a popular sport
- Anyone can swing a golf club
- Occasionally a complete novice will hit a good tee short
- Being a professional is hard work
 - Training
 - practice

Royal Holloway: Our Most Famous Ex-Student?

Why is the Profile of Encryption Growing?

- Increase in volume of communications over insecure channels
- Increased requirement for remote access to information
- Regulatory requirements for 'adequate' protection of data
- Need for electronic 'equivalent' to handwritten signatures and other forms of identification
- It can be fun!

Bletchley Park

Some Important Changes since 1945

- Advent of software
- Advent of fast computers
- Advent of new communications media
- Advent of binary codes
- Increase in general awareness
- Many applications other than provision of confidentiality
- Public key cryptography
- Seen as part of a wider discipline: Information
 Security
 Plymouth 2013

What is Information Security?

Information Security includes the following three aspects:

Confidentiality

 Protecting information from unauthorised disclosure, perhaps to a competitor or to the press

Integrity

 Protecting information from unauthorised modification, and ensuring that information, such as a customer list, can be relied upon and is accurate and complete

Availability

- Ensuring information is available when you need it

NOTE: Impersonating an authorised user is often a more effective form of attack than 'breaking' the technology

Authentication

- It is important to authenticate people and devices
- Man-in-the-Middle Attacks
- How to beat a Grand Master at chess

Plymouth 2013

Early Definition of a Cipher System

Confidentiality

How do you keep a secret?

- Don't let anyone have access to the information
- Disguise it so that 'unauthorised' people cannot understand it
 - Shared secrets rely on trust
 - Trust in people, processes, technology
- If you use cryptography to protect your information then there will be a key to which you must deny access

Warnings

- If that key is lost and the algorithm is strong then your data is lost 'forever'
- If someone else gains access to that key then they almost certainly have access to your information

Breaking an Algorithm

- Being able to determine plaintext from ciphertext without being given key
- Exhaustive key search is always (theoretically) possible

Well Designed (Symmetric) Algorithm

• 'Easiest' attack is exhaustive key search

Strong Algorithm

• Well designed with a large number of keys

Note: History is full of instances where algorithms were assumed to be well designed but

Breaking a Security System

- 'Broken' is an emotive term
- Attacks often work only in unrealistic conditions chosen by attacker
- Always understand assumptions associated with the term
- For algorithms:
 - Ciphertext only
 - Known plaintext attack
 - Chosen plaintext attack

The 'Secure Channel' Concept

AIM: To send information securely over an insecure network

- We achieve this by building a "secure channel" between two end points on the network
- Typically offering:
 - Data origin authentication
 - Data integrity
 - -Confidentiality
- Cryptography is an important tool

Disclaimer: Cryptography \neq **Security**

- Crypto is only a tiny piece of the security puzzle
 but an important one
- Most systems break elsewhere
 - incorrect requirements or specifications
 - implementation errors
 - application level
 - social engineering

Security Breaches

Many Reasons:

- Badly designed systems
- Inappropriate policies
- Human error
- Clever, innovative (technical) attacks
- Misplaced trust (e.g. In employees or trusted third party)

Attacking Cryptographic Systems

- Passive interceptor attempts to break algorithm
- Active interceptor has more options
- Interception not necessarily the 'best' form of attack
 - Attack protocols
 - Attack key management
 - Attack the hardware
 - Impersonate genuine users
 - Espionage

Is PK Cryptography built on a 'sound' basis?

"Many cryptographic systems rely on the inability of mathematicians to do mathematics". (Donald Davies: LMS Lecture)

Tongue in cheek?

Existence proofs do not provide solutions Algorithms should be implementable

Are Today's Algorithms 'Future Proof'?

• Symmetric algorithms

- -if well designed then key searches are 'best' attacks
- -Main concern is advances in technology
- -Moore's Law
- Asymmetric algorithm
 - -Always concerned about mathematical advances
 - -Quantum computing
- Hash functions
 - –Confidence shaken

A Never Ending Debate

- What gives us confidence in an algorithm?
 - -Standards?
 - -Ask the opinions of experts?
- Early debate
 - -Publicly known or proprietary algorithms?
 - -Less of an issue now than in the 1980s

WARNING

The fact that an algorithm is published and unbroken says nothing about its strength

Kerchoff's Principle

 The security of a cryptographic system should not depend on keeping the encryption algorithm secret

It does not say

• The encryption algorithm should be made public

However

 Anyone assessing the security of a cryptographic system needs to have confidence that the algorithm is strong

So:

 Financial institutions should use public algorithms where appropriate

A Fact of Life !

 In theory there is no difference between theory and practice. In practice there is.

RSA: The Theory

- The published modulus is the product of 2 secret primes
- Knowledge of the secret primes makes it easy to find the private key
- In general, determining the private key appears to require knowledge of the primes
- Factorisation is difficult
- So, for large moduli, RSA is secure

Attacks on RSA

The theory assumes that the attacker will need to factor *n* using a mathematical factorisation algorithm

In practice this may not be so

EARLY ATTACKS

Attack prime generator rather than try to factor *n* mathematically

- (1) Exhaustive prime search
- (2) Exploit bias in generation process

So have we learnt from these early mistakes?
 In theory: YES
 In practice: NO

'Shared' Primes

- Factoring RSA moduli is very difficult
- Finding g.c.d. of two RSA moduli is easy
- Factoring two RSA moduli which share a prime factor is easy
- Recent research showed that, for a sample 6.6 million RSA keys, over 4% either have a common modulus or gave moduli sharing a common prime factor
- Suspect prime generators?

"Ron was wrong, Whit is right"

"When exploited it could affect the expectation that the public key infrastructure is intended to achieve"

(Arjen K Lenstra, James P Hughes et al)

It is NOT just about Algorithms

Early 1980s:

Thorn EMI conference
 "Security is People"

Early 1990s:

Ross Anderson's paper
 "Why crypto systems fail"

Cryptographic Systems

- The use of strong algorithms prevents attackers from calculating or guessing keys
- Keys need to be stored and/or distributed throughout the system
- Keys need protection

Protecting Keys (Storage or Distribution)

- Physical security
 - Tamper Resistant Security Module (TRSM)
 - Tokens (Smart Cards)
- Components
 - Secret Sharing Scheme
- Key hierarchies
 - Keys encrypted using other keys
 - Lower level keys derived from higher level ones

Side Channel Attacks (1)

To find a cryptographic key

- Exhaustive key search attacks try to find the secret key by random trial and error
- Side channel attacks try to use additional information drawn from the physical implementation of the cryptographic algorithm at hand so as to be substantially better than trial and error

Side Channel Attacks (2)

- Changed the way cryptographers think about security
 - Properties of digital circuits are far more important for security than was previously believed
 - Many previous design approaches recognised as inadequate

Some Recent 'Changes'

- More attacks concentrate on the implementation of the algorithm and the accompanying protocols
- Some exploit error messages
- Academic research is becoming less 'blue skies' and focussing on real systems/problems
- Theory and practice are getting closer to each other

Error Messages

ATM transaction

- Incorrect PIN
- Insufficient funds in account
- Exceeded daily limit

Public Key Infrastructures

- Certification Authorities
- Sign certificates to bind user's ID to their public key
- Hierarchy of CAs
- Root CA at top of hierarchy

NOTE: If root CA's private key is compromised then the entire PKI is affected

DigiNotar

- Netherlands based CA
- Host many other CAs
 - SSL certificates
 - Qualified certificates
 - Government accredited
- Hackers gained unauthorised access to their CA servers
- Issued series of rogue certificates

SERIOUS BREACH: DigiNotar root certificate was trusted by most widely used web browsers and email clients Hacker set up spoof websites (e.g. Googlemail)

• Who, or what, can we trust?

Some Things Never Change

- The widespread use of encryption for confidentiality has always been a cause of concern for Governments
- Simplified version of Government's position
 - They are happy to support the use of strong encryption for 'good' purposes
 - Unhappy about the use of strong encryption for 'bad' purposes

Saints or Sinners ?

Plymouth 2013

Law Enforcement's Dilemmas

- Do not want to intrude into people's private lives
- Do not want to hinder e-commerce
- Want to have their own secure communications
- Occasionally use interception to obtain information
- Occasionally need to read confiscated, encrypted information

Newton Minow, Speech to the Association of American Law Schools, 1985

- After 35 years, I have finished a comprehensive study of European comparative law
- In Germany, under the law, everything is prohibited, except that which is permitted
- In France, under the law, everything is permitted, except that which is prohibited
- In the Soviet Union, under the law, everything is prohibited, including that which is permitted
- And in Italy, under the law, everything is permitted, especially that which is prohibited